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INTRODUCTION

Soil hydraulic properties play a crucial role in 
regulating the transportation of water and solutes 
within the soil. Various applications such as ir-
rigation, land use planning, drainage, and drought 
risk assessment require a thorough understanding 
of these properties (Dobarco et al., 2019). Among 
them, the soil water retention curve (SWRC) is 
a characteristic of particular interest because it 
describes the relationship between soil water 
potential (Ψ) and soil water content (θ)(Kudayr 
and Salim, 2019; Sisson et al., 1988). Hence, 
determining the SWRC is essential for these ap-
plications. the SWRC has an important role in 
describing other soil hydraulic properties such 

as saturated and unsaturated conductivity (Salim 
and Salih, 2008; Seki, 2023), diffusivity (Salim 
and Atee, 2007) and soil permeability (Zeng et 
al., 2019). The SWRC is primarily influenced by 
the soil’s texture, structure, bulk density, organic 
matter, soil pore size geometry and distribution, 
carbonate minerals (Mahdi, 2008; Mahdi and 
Naji, 2016).

Usually, to measure the relationship between 
volumetric water content and soil pressure in the 
laboratory, devices are designed on the basis of 
the pore sizes distribution in the soil matrix, such 
as pressure plates and pressure membranes. This 
relationship can also be measured in the field di-
rectly using a tensiometer. However, these meth-
ods require a long time to obtain data, effort, and 
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high cost (Azmi et al., 2019; Roux, 2019). In ad-
dition, there is an inherited spatial variation be-
tween and within spaces in soil properties. There-
fore, many scientists’ efforts have been made to 
predict SWRC indirectly (Al-Hasani et al., 2021; 
Ati et al., 2014; Seki, 2023; Vereecken et al., 
2016). On the other hand, the exiting ofdata base 
for physical and chemical properties of soil and 
the ease of accessability prompted researchers to 
take advantage of this data and use it to develop 
functions that link the relationship between these 
characteristics and the hydro-related properties 
(Castellini and Iovino, 2019). 

Pedotransfer functions (PTFs) translate the 
easy-to-measure data we have (for example, tex-
ture class, particle size distribution, bulk density, 
and organic matter) into the hard-to-measure data 
we need (soil hydraulic data such as SWRC). The 
use of PTFs requires some care, as soil-derived 
PTFs in a particular region are not suitable in oth-
er regions due to the large difference in soil prop-
erties. These differences may affect the accuracy 
of the results or the expected water content of the 
soil. Therefore, choosing the appropriate PTF for 
a particular region and for certain types of soil is 
essential. for the accuracy of the estimates (Me-
deiros et al., 2014; Pachepsky and Hill, 2017).

Frequently used methods for deriving PTFs 
are statistical regressions, specifically multiple 
linear regressions (MLR). In addition, contem-
porary numerical and statistical techniques in-
clude generalized linear models (GLM), general 
additive models (GAM), ensemble method for 
data processing (GMDH), and multiple adap-
tive regression lines (MARS)(Botula et al., 2014; 
Chung, 2021). Other approaches include artifi-
cial neural networks (ANNs), classification and 
regression trees (CART), k-nearest neighbors 
(kNN), support vector machines (SVM), genetic 
algorithms (GA), and genetic programming (GP)
(Botula et al., 2014).

In order to obtain a good PTF for the pre-
diction of θ(Ψ), the model must obey the range 
constraints of 0 to 1 (McNeill et al., 2018). In 
order to link to constraint, logit transform is usu-
ally used for a variable response or application 
of generalized linear models (such as beta re-
gression).The logit transformation is commonly 
used for continuous response variables that are 
bounded between 0 and 1. The logit model is a 
useful tool for transforming soil water content 
to ensure linearity in the response, allowing for 
the application of standard linear regression 

analysis. However, this method has some limi-
tations. Firstly, the interpretation of parameters 
must be made in relation to the mean of the log-
it-transformed response rather than the response 
itself. Secondly, soil water content tends to be 
skewed and may display heteroscedasticity, with 
greater variation around the mean and less varia-
tion towards a response of zero (Paraiba et al., 
2013). To address this potential limitation, one 
approach is to assume a beta distribution for the 
response variable (McNeill et al., 2018).

This study aims to develope and evaluate the 
best model for predicting SWRC for Iraqi soils 
using the two methods of logit transformation 
and beta regression through the use of easy-to-
measure soil characteristics in order to reduce the 
time, effort and cost spent using the traditional 
method.

MATERIALS AND METHODS

Soil samples and data preparation

In order to conduct this study, a total of 60 
soil samples were procured from 30 distinct loca-
tions across Iraq, as delineated in Figure 1. These 
samples were obtained from two depths: the sur-
face layer (0–0.3 m) and the subsurface layer 
(0.3–0.6 m).

After acquiring the soil samples, a series of 
physical and chemical laboratory analyses were 
conducted to estimate various soil properties, in-
cluding soil particle size distribution (PSD), Bulk 
Density (ρb), particle density (ρs), porosity (f), 
available water (AW), soil content of carbonates 
(carbonate), organic matter (om), and saturated hy-
draulic conductivity (KS). The methods employed 
for these analyses were as described in [21]. Ad-
ditionally, the height of the capillary (h) was de-
termined using the method outlined by Miller and 
Bresler (1977), with the height value after 7 days 
being considered as an explanatory variable (EV). 
Descriptive statistics for the measured values of 
soil physical and hydraulic properties used to deri-
vation of PTF as given Table 1. Furthermore, sixty 
relationships of θ(Ψ) were determined by mea-
suring the volumetric water content at various po-
tentials (0, 5, 10, 33, 50, 100, 500, 1000, and 1500 
kPa) through the use of pressure plate apparatus. 
This relationship was regarded as the (RV).

To demonstrate the significance of soil car-
bonates in predicting Soil-Water Retention Curve 
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(SWRC) within the range of [0–1], the ratio of soil 
Particle Size Distribution (PSD) was converted 
from the ternary system (Triangle Ternary Struc-
ture consisting of Psand, Psilt, and Pclay ratios) to 

the binary system (Cartesian system)(McNeill et 
al., 2018). This conversion was achieved by in-
corporating the soil carbonate content, as formu-
lated in Equation 1:

Figure 1. Site map fetch selected soil samples from 30 unique sites

Table 1. Descriptive statistics for soil physical and hydraulic properties used to derivation of PTF

EV
Data set

Min Max Mean

Sand (g.kg-1) 28.100 805.200 238.833

Silt (g.kg-1) 135.600 659.700 404.473

Clay (g.kg-1) 35.800 613.400 356.693

ρb (g.cm-3) 1.075 1.486 1.248

ρs (g.cm-3) 2.403 2.769 2.546

f (cm3.cm-3) 0.390 0.594 0.509

h (cm) 13.300 90.200 38.220

Ks (cm.hr-1) 0.004 59.500 3.982

AW (cm3.cm-3) 0.076 0.333 0.169

carbonate (%) 13.560 65.970 40.447

om (%) 0.010 1.222 0.517

RV
Data set

Min Max Mean

θ(0) 0.390 0.594 0.509

θ(5) 0.322 0.572 0.459

θ(10) 0.299 0.556 0.428

θ(33) 0.231 0.498 0.375

θ(50) 0.177 0.475 0.343

θ(100) 0.143 0.415 0.286

θ(500) 0.104 0.340 0.238

θ(1000) 0.091 0.305 0.220

θ(1500) 0.082 0.298 0.206
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Psand° + Psilt° + Pclay° + Pcarbonate = 1 (1)

where: Psand° = (1 − Pcarbonate)Psand;   
Psilt° = (1 − Pcarbonate)Psilt;   
Pclay° = (1 − Pcarbonate)Pclay.

It is widely acknowledged that the values 
of the ratios of the three soil particles exhibit a 
strong and significant correlation, irrespective of 
the type of correlation (Yan et al., 2022). This is 
because any alteration in one ratio value inevita-
bly affects the other two values. Regression proce-
dures are commonly employed in Cartesian space 
as it is more convenient to work with. Moreover, 
converting to Cartesian space can reduce the ap-
parent correlation between proportions of soil 
particles by eliminating the structural correlation 
between classes of soil particles (McNeill et al., 
2018). To convert from the triple system to the 
Cartesian system, the theory proposed in (Cor-
nell, 1981) is followed, which involves creating 
two variables via Equations 2 and 3:

w1 = 2Psand° − Psilt° − Pclay° − Pcarbonate (2)

w2 = Psilt° − Pclay° − Pcarbonate (3)

Derive models

Two distinct approaches were employed to 
model θ(Ψ):

1. Logit – model
This model was constructed using the statisti-

cal software SAS version 9.4 (Statistical Analysis 
Systems) (SAS, 2023), with the response variable 
transformed using the logit transformation equa-
tion described in Equation (4):

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝜃𝜃𝜃𝜃(𝛹𝛹𝛹𝛹𝑙𝑙𝑙𝑙) = log �
𝜃𝜃𝜃𝜃(𝛹𝛹𝛹𝛹𝑙𝑙𝑙𝑙)

1 − 𝜃𝜃𝜃𝜃(𝛹𝛹𝛹𝛹𝑙𝑙𝑙𝑙)
� 

 

ln �
𝜃𝜃𝜃𝜃(𝛹𝛹𝛹𝛹𝑙𝑙𝑙𝑙)

1 − 𝜃𝜃𝜃𝜃(𝛹𝛹𝛹𝛹𝑙𝑙𝑙𝑙)
� 

 

MBE =
1
𝑛𝑛𝑛𝑛
∑(𝑦𝑦𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑦𝑦𝑦𝑦�𝑙𝑙𝑙𝑙) 

MAE =
1
𝑛𝑛𝑛𝑛
∑|𝑦𝑦𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑦𝑦𝑦𝑦�𝑙𝑙𝑙𝑙| 

RMSE = �1
𝑛𝑛𝑛𝑛
∑(𝑦𝑦𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑦𝑦𝑦𝑦�)2 

𝑅𝑅𝑅𝑅2 =
∑(𝑦𝑦𝑦𝑦�𝑙𝑙𝑙𝑙 − 𝑦𝑦𝑦𝑦�)
∑(𝑦𝑦𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑦𝑦𝑦𝑦�) 

(4)

where: θ(Ψi) – represents the volumetric water 
content at a specified potential value. The 
purpose of this conversion is to achieve 
a normal and symmetrical distribution of 
the response variable values at different 
potential values. One of the conditions for 
constructing this model is that the values 
of the response variable must be limited to 
the range of [0–1]. The logit model should 
be configured in the following format:

logit θ(Ψi) = a0 + a1x1 + a2x2 + ⋯ + anxn (5)

where: a0 – the intercept;   
a1,..., an – the regression coefficients;   

x1 to xn – refer to the explanatory vari-
ables that represent the soil properties 
used in this study.    
The model optimization was obtained by 
applying a backward elimination meth-
od to select the EV at P < 0.1 level of 
significance.

2. Beta – model
The logit model is a commonly used method 

in the field of soil science and water resources to 
transform soil water content to a linear response 
for regression analysis. However, this approach 
has limitations. One challenge is the skewed dis-
tribution of soil water content, which may result 
in heteroscedasticity. Additionally, the interpreta-
tion of the model parameters based on the mean of 
the transformed response can be challenging. To 
address these limitations, a beta regression model 
can be used assuming the response follows a beta 
distribution (Ferrari and Cribari-Neto, 2004). The 
development of the beta regression model is simi-
lar to that of the logit model, but it allows for a 
more accurate interpretation of the response pa-
rameters. The beta model was derived by R studio 
version 4.2.0 statistical software (R Core Team, 
2020). The Beta model should be configured in 
the following format:

g(μ) = a0 + a1x1 + a2x2 + ⋯ + anxn (6)

where: g(μ) – a correlation function that relates 
the mean (μ) of a response variable to a 
set of linear predictors (in this study us-

ing logitθ(Ψi) = 
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� 

 

ln �
𝜃𝜃𝜃𝜃(𝛹𝛹𝛹𝛹𝑙𝑙𝑙𝑙)

1 − 𝜃𝜃𝜃𝜃(𝛹𝛹𝛹𝛹𝑙𝑙𝑙𝑙)
� 

 

MBE =
1
𝑛𝑛𝑛𝑛
∑(𝑦𝑦𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑦𝑦𝑦𝑦�𝑙𝑙𝑙𝑙) 

MAE =
1
𝑛𝑛𝑛𝑛
∑|𝑦𝑦𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑦𝑦𝑦𝑦�𝑙𝑙𝑙𝑙| 

RMSE = �1
𝑛𝑛𝑛𝑛
∑(𝑦𝑦𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑦𝑦𝑦𝑦�)2 

𝑅𝑅𝑅𝑅2 =
∑(𝑦𝑦𝑦𝑦�𝑙𝑙𝑙𝑙 − 𝑦𝑦𝑦𝑦�)
∑(𝑦𝑦𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑦𝑦𝑦𝑦�) 

 as cor-

relation function);    
a0 – the intercept;   
a1,..., an – the regression coefficients;   
x1 to xn – refer to the explanatory vari-
ables that represent the soil properties 
used in this study.    
The model optimization was obtained 
by applying the Backward elimination 
method to select the EV at P < 0.1 level 
of significance.

The predictive capabilities of the logit and 
Beta models were evaluated using the statistical 
measures quantifying goodness-of-fit including 
Mean Bias Error (MBE), Mean Absolute Error 
(MAE), root mean squared error (RMSE) and co-
efficient of determination (R2):
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RMSE = �1
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(7)
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𝜃𝜃𝜃𝜃(𝛹𝛹𝛹𝛹𝑙𝑙𝑙𝑙)

1 − 𝜃𝜃𝜃𝜃(𝛹𝛹𝛹𝛹𝑙𝑙𝑙𝑙)
� 

 

MBE =
1
𝑛𝑛𝑛𝑛
∑(𝑦𝑦𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑦𝑦𝑦𝑦�𝑙𝑙𝑙𝑙) 

MAE =
1
𝑛𝑛𝑛𝑛
∑|𝑦𝑦𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑦𝑦𝑦𝑦�𝑙𝑙𝑙𝑙| 

RMSE = �1
𝑛𝑛𝑛𝑛
∑(𝑦𝑦𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑦𝑦𝑦𝑦�)2 

𝑅𝑅𝑅𝑅2 =
∑(𝑦𝑦𝑦𝑦�𝑙𝑙𝑙𝑙 − 𝑦𝑦𝑦𝑦�)
∑(𝑦𝑦𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑦𝑦𝑦𝑦�) (10)

where: yi denotes the measured value;   
ŷi refers to the predicted value;   
y̅ represents the average of the measured 
value y;     
n is the total number of observations.

RESULTS AND DISCUSSION

Table 2 presents the regression coefficients 
and coefficient of determination for Pedotransfer 
functions predicting θ(Ψ) using both logit and 
beta models. The table shows that the two models 
have similarities in the number and type of ex-
planatory variables used to derive the predicted 
models for SWRC points, with the exception of 
θ(0) when the backward method is employed for 

variable selection. Specifically, the logit model 
for predicting θ(0) includes saturated hydrau-
lic conductivity and soil porosity as explanatory 
variables, while the beta model adds w2, par-
ticle density, and bulk density. These common 
soil characteristics are important in determining 
water content at different potential points. The 
results indicate that W1, which represents soil 
particle size distribution(sand, silt, and clay) and 
soil content of carbonate minerals, soil porosity, 
available water, and capillary height are the most 
important explanatory variables in predicting 
volumetric water content for the SWRC points. 
W1 is included in the formation of both Logit 
and Beta models for the potential range of 10 to 
1500 kPa. Soil porosity is introduced as an ex-
planatory variable for the derivation of Logit and 
Beta models predicting volumetric water content 
for the potential range of 0 to 33 kPa and at 1500 
kPa. Available water is included in the derivation 
of Logit and Beta models predicting volumetric 
water content for the potential range of 10 to 100 
kPa and at 1500 kPa. Capillary height is included 
in the derivation of Logit and Beta models pre-
dicting volumetric water content for the potential 
range of 33 to 1500 kPa.These soil properties are 
crucial in determining the relationship between 

Table 2. Regression coefficients and coefficient of determination for Pedotransfer functions predicting θ(Ψ)
Logit model

Model (Intercept) w1 w2 ks ρs ρb f AW h om r2

logit θ(1500) -0.732 -0.126 0.640 -1.017 -0.002 0.617

logit θ(1000) -0.527 -0.140 -0.002 0.486

logit θ(500) -0.483 -0.119 -0.002 0.408

logit θ(100) -0.521 -0.140 0.628 -0.001 0.456

logit θ(50) -0.279 -0.140 -0.172 1.166 -0.001 0.658

logit θ(33) -0.615 -0.079 0.412 1.201 -0.002 0.646

logit θ(10) -0.749 -0.054 1.086 0.263 0.697

logit θ(5) -0.816 1.461 0.724

logit θ(0) -0.873 -0.00002 1.746 1.000

Beta model

Model (Intercept) w1 w2 ks ps pb f AW h om r2

g  θ(1500) -1.609 -0.278 1.366 -2.355 -0.005 0.618

g  θ(1000) -1.199 -0.308 -0.006 0.486

g  θ(500) -1.095 -0.262 -0.005 0.409

g  θ(100) -1.195 -0.312 1.486 -0.003 0.457

g  θ(50) -0.642 -0.311 -0.392 2.699 -0.003 0.659

g  θ(33) -1.413 -0.176 0.964 2.712 -0.003 0.646

g  θ(10) -1.715 -0.124 2.482 0.612 0.697

g  θ(5) -1.870 3.350 0.725

g  θ(0) -1.929 0.001 -0.0001 0.028 -0.060 3.869 -0.0005 1.000
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θ(Ψ) as PSD with carbonate minerals affects ge-
ometry and pore space distribution. In soils where 
small-sized particles (clay and silt) dominate, 
such as soft-textured soils, there is a high propor-
tion of small-sized porosity, which increases the 
soil’s ability to retain water compared to coarse-
textured soils, where large-sized particles (e.g., 
sand) dominate, reducing water holding capacity 
due to lower porosity. Furthermore, specific sur-
face area increases with decreasing soil particle 
size, and since the specific surface area of soil 
particles plays a significant role in water hold-
ing capacity, an increase in specific surface area 
increases the soil’s ability to hold water. Capil-
lary height and available water are also affected 
by PSD andpore size distribution, where smaller 
pore size leads to a higher capillary height and 
available water, contributing to the formation of 
most Logit and Beta models.

Table 3 presents an assessment of the perfor-
mance of both the logit and beta models in pre-
dicting θ(Ψ) across various measures, including 
MBE, MAE, RMSE, and R2, at different levels 
of water potential. The evaluation criteria for the 
models were based on the ones that produce the 
lowest MAE and RMSE values, the highest R2 
value, and the least biased MBE value (closest to 
zero).Overall, the results indicate that the logit 
and beta models performed equally well when 
using the MAE, RMSE, and R2 criteria for the 
range of potential values tested. However, the 
models showed discrepancies in their efficiency 
evaluations when using the MBE measure. Spe-
cifically, the beta model outperformed the logit 
model in MBE evaluations for the range of po-
tentials between 5 and 1500 kPa. The MBE val-
ues for the beta model ranged from -0.00013 to 
0.00004, while those for the logit model ranged 
from 0.00011 to 0.00169. It is worth noting that 

at θ(0), the logit model produced a better MBE 
value of 0.00001, compared to the beta model’s 
0.00002. The convergence of MAE, RMSE, and 
R2 values indicates that both the logit and beta 
model are performing similarly in terms of pre-
dictive accuracy. This means that both models 
are able to explain a similar amount of variance 
in the data and make similarly accurate predic-
tions.However, the difference in MBE values 
suggests that there is a bias in the logit model 
and that is not present in the beta model. The 
MBE values of the beta-regression model being 
closer to zero or less biased compared to the log-
it-transformed model for explanatory variables 
means that the beta-regression model is better at 
estimating the true values of the response vari-
able. The reason for this difference in bias could 
be due to the fact that the beta-regression model 
is specifically designed for modelling continu-
ous proportions, whereas the logit-transformed 
model assumes a linear relationship between 
the explanatory variables and the transformed 
response variable. In other words, the beta-re-
gression model is better suited for the type of 
data being analysed and is able to explain the 
underlying relationships more accurately, result-
ing in less bias.

The graphical representation in Figure 2 
demonstrates a linear relationship (1:1) between 
the measured and predicted water content values 
of the Pedotransfer Function (PTF) for both the 
logit and beta models. This observation indicates 
a strong agreement and accurate prediction be-
tween the measured and expected water content 
values at each specific tension for both models. 
Therefore, it confirms the close agreement be-
tween the measured water content and the pre-
dicted water content for each specific tension in 
both models.

Table 3. Evaluation of the efficiency of the Pedotransfer functions for both logit and beta models

Ψ
Logit Beta

MBE MAE RMSE R2 MBE MAE RMSE R2

0 0.00001 0.000 0.000 1.000 0.00002 0.000 0.000 1.000

50 0.00011 0.017 0.022 0.724 -0.00002 0.017 0.022 0.725

100 0.00018 0.019 0.024 0.697 -0.00001 0.019 0.024 0.697

330 0.00045 0.022 0.028 0.646 -0.00010 0.022 0.028 0.646

500 0.00074 0.024 0.032 0.658 -0.000001 0.024 0.032 0.659

1000 0.00113 0.027 0.033 0.456 -0.00013 0.026 0.033 0.457

5000 0.00169 0.026 0.033 0.408 0.00003 0.026 0.033 0.409

10000 0.00157 0.023 0.030 0.486 0.00004 0.023 0.030 0.486

15000 0.00150 0.022 0.028 0.617 -0.00005 0.022 0.028 0.618
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Figure 2. (1:1) linear relationship between measured and predicted water 
content values for PTF and for logit and Beta models
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CONCLUSION

This study confirmed the importance of local, 
national-based databases of hydro-related physi-
cal soil properties as they can provide background 
data which can lead to higher quality PTF esti-
mates of the SWRC when the inherent variabil-
ity In particle size distribution is normalized in 
a scale of [0-1] by converting from triple system 
to the Cartesian system Although the use of esti-
mated SWRC values Is becoming more common, 
the importance of direct determination methods 
should be used as a yardstick for the goodness of 
prediction over a wide range of water content-suc-
tion head values which is essential for Irrigation 
water management and drainage system design.
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